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A METHOD OF COMPUTING THE TRANSIENT TEMPERATURE OF THICK WALLS FROM

ARBITRARY VARIATION

OF ADIABATIC-WALL TEMPERATURE AND

HEAT-TRANSFER COEFFICIENT *

SUMMARY

A method of calculating the temperature of thick walls has
been developed in which are used relatively new concepts, such
as the time series and the response to a unit triangle variation
of surface temperature, together with essentially standard
Jormulas for transient temperature and heat flow into thick
walls, The method can be used without knowledge of the
mathematical tools of s development. The method is partic-
ularly suitable for determining the wall temperature in one-
dimensional thermal problems in aeronautics where there is a
continuous variation of the heattransfer coefficient and
adighatic-wall temperature. The method also offers a con-
venient means for solving the inverse problem of determining
the heat-flow history when temperature history is known.

A series of diversified problems were solved by eaact analysis
as well as by the new method. A comparison of the results
shows the new method to be accurate. The labor involved s
very modest in consideration of the nature of the thick-wall
temperature problem. Limiting solutions for the “infintfely
thick” wall and for walls so thin that thermal lag can be
neglected were also obtained.

INTRODUCTION

In aeronautical applications, external surfaces are heated
by the impact and friction of the air. For cases in which
the structural temperatures never reach equilibrium, the
transient temperatures of the surfaces often govern the
design; and it is necessary to be able to predict these tem-
peratures.

Literature on transient temperatures in thick walls dates
from the classical works of Fourier. Perhaps the most ex-
tensive work on the subject is given in reference 1. Most
literature giving the solution to the transient temperatures
in thick walls is based on the premise that the temperature
history of one or more principal surfaces is known or given.
Only a limited amount of literature is available relative to
transient temperatures in thick walls under the influence of
forced convection. The forced-convection equation for
heat transfer in aeronautical applications is ¢g=h(Te,—T),
which states that the rate of heating ¢ is proportional to
the difference between the adiabatic-wall temperature T,

1 Bupersedes NACA Technical Note 4105 by P. R, Hill, 1957.

By P. R. HiLL

- and the wall temperature 7. The coefficient of propor-

tionality is the heat-transfer coefficient k. In the classical
problem of the convection heating of a thick wall, 2 has
been assumed to be constant. In the usual aeronautical
application, the fact that & varies with time is the source of
the difficulty in obtaining & solution.

The thick-wall case treated in this paper is the one gov-
erned by Fourier’s classical partial differential equation

oT_, oT
ot " o

In the case governed by this equation, the wall is composed
of a homogeneous material and the temperature gradients
and heat flow parallel to the surface are negligible. In one
boundary relation for this case, the convective heat rate is
equated to the heat absorbed by the wall or to the product
of the conductivity and the temperature gradient in the wall
at the heated surface; that is,

Since A occurs as & product with 7 in this boundary equation,
the usual procedures of operational calculus do not apply.
When solutions for the temperatures of thick walls have
been necessary in aeronautical work, the method generally
used has been to divide the thick wall into a number of
slabs in order to make a step-by-step numerical integration
of Fourier’s equation of heat flow. Since steps in both
distance and time must be taken, the procedure is tedious
and time consuming unless the use of & high-speed auto-
matic computing machine is resorted to. If it is necessary
to do the work without the use of such equipment, a method
introduced by Schmidt (ref. 2) wherein some of the calcu-
lations are accomplished graphically may be used to reduce
the labor to some extent. This method is known as the
Schmidt plot method.

In the present paper a simple method is developed for the
calculation of the temperature history of the surfaces of a
thick wall or of any plane within the wall. The procedure
is to select from a table a set of coefficients which depend
on the physical properties of the wall. These coefficients
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and other data are substituted into explicit algebraic for-
mulas to determine the temperature of the heated wall
surface. If the heat-transfer coefficients are known, no
guess or iteration procedure is required. As can be seen by
the results of the example problems presented, the accuracy
can be as good as is desired. For equal time-step sizes, the
method is more accurate than more laborious numerical
methods.

The simplicity of the results depends on two factors:
One is the suppression of the variable x representing the
distance into the wall by using an integrated form of Fourier’s

equation and assigning & value of x corresponding to the.

heated surface. The other is 8 mathematical device known
as the time series introduced by Tustin (ref. 3). The time
series is defined in appendix A. Reference 3 also introduced
various manipulations of the series. The multiplication of

two series is an important manipulation by means of which -

specific results can be generalized. Other writers (ref. 4,
for example) have also presented various manipulations of
the series.

The present paper is divided into two parts, analysis and .

application. The section on analysis includes a treatment
of the determination of the temperature history for the
special cases of the thermally thin wall and the infinitely
thick wall as well as for the wall of intermediate thickness.
The inverse problem of determining the heat flow correspond-
ing to a known temperature history is also discussed. Al-

though the method was set up for the purpose of predicting .

wall temperatures in engineering applications, it has also
been found to be suitable for research applications wherein
the transient skin temperature is measured and the heat-flow
and heat-transfer-coefficient histories are deduced. Appen-
dix A gives background material pertaining to the use of time
series that may be an aid to a study of the analysis. Ap-
pendix B gives a summary of analytical temperature and
heat-flow formulas used either as a basis of analysis or used
in the solution of examples to test the accuracy of the present
method. In the section on application the computing
formulas are reviewed and several examples of their use are
given. Because of the explicit nature of the temperature
formulas, it is not necessary to study the analysis to use the
results.

SYMBOLS

A dimensionless coefficient to determine heated-
surface temperature history

b slope of adiabatic-wall temperature with respect to
time, °F/hr

B dimensionless coefficient to determine inside-wall
temperature history

¢ specific heat, Btu/lb-°F

e base of natural logarithms

Fz,t) any function corresponding to reference slope
y=(1/3)¢

Fu ) any function corresponding to arbitrary control
line y=y(?)

Fa@®) any function corresponding to unit triangle control
line

ad heat capacity of wall, pel, Btu/(sq {t) (°F)

! i
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7h heat-transfer coefficient at =0, Btu/(hr)(sq ft)
(°F)

h heat-transfer coefficient at z=I, Btu/(hr)(sq ft)
(°F) '

H heat-transfer number, h3x*/16G@

He, heat-transfer number for infinitely thick wall,
3h/7k3[SK

k diffusivity, K/ep, sq ft/hr

K conductivity, (Btu)(ft)/(hr)(sq 1t) (°F)

l wall thickness, ft

M memory coefficients, dimensionless

m term designating time in multiples of basic inter-
val &

n term number in infinite series

q instantaneous heat-transfer rate due to uniform

temperature rise of heated wall surface of 1°
in time §, Btu/(hr)(sq ft)

Om average heat-transfer rate from time (m—1)8 to
mé due to uniform temperature rise of heated
wall surface of 1° in time &, Btu/(hr)(sq ft)

qa heat-transfer rate corresponding to unit triangle
variation of surface temperature

Ta,m average heat-transfer rate from time (m—1)5 to
: md due to unit triangle reference temperature
variation of heated-wall surface, Btu/(hr)(sq ft)
g:(t) heat-flow history at hedated surface due to unit
temperature step of heated suface
r radiation rate, Btu/(hr)(sq ft)
R radiation term, 767%/16G, °F
R. radiation term for infinitely thick wall, 3R+/=k5/8SK,
°F
t time, hr
T heated-wall-surface temperature, °F
-Ts value of step in wall-surface temperature, °F
Tow adiabatic-wall temperature or effective boundary-
layer temperature, °F .
T, temperature of inside (unheated) surface or of any
plane within wall, °F
V1) temperature response to unit step in 7y, °F
z distance through wall, ft
Y ordinate of control line or altitude of triangle
a, positive roots of auxiliary equation in analytical
solution of wall temperature
5 basic time interval in time series
ratio of heat-transfer coefficient at cooter wall
surface to heat-transfer coefficient at heated
wall surface
6 difference in temperature between heated surface

and any other plane due to unit triangle varia-
tion of heated surface, °F

o, difference in temperature between heated surface
and any other plane due to uniform reference-
temperature rise of 1° in time 5, °F

P weight density, lb/cu ft

T dummy time variable, hr
Subseript or superseript:

m index denoting term number

A dot over a symbol denotes the derivative with respect
to time.
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ANALYSIS
TEMPERATURES ON OUTSIDE SURFACE

The wall considered in this paper is composed of & homo-
geneous material, and the temperature gradients and heat
flow parallel to the surface are negligible. The transient
temperatures of the heated or outside surface of the wall
are determined by means of Fourier’s equation which governs
the heat flow through the wall:

or_
of
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The wall properties expressed by the diffusivity % are con-
stant. The boundary conditions are given by the state-
ments that the flow of heat at the unheated face of the wall
(where z is taken as zero) is zero, that is,

0
<_-b_zv>z-0=0

and that the heat transferred to the heated face is given by
the relation
)

For convenience, the initial temperature is taken as zero at
zero time:
(4)

Since both % and T are functions of ¢ and occur as a product
in equation (38), the transform procedures of operational
calculus do not apply. The problem may be stated in
another form by means of an integral equation expressing
the heat balance at the heated surface.

Let ¢,(f) be the heat-flow history at the heated wall surface
at =1 due to & unit step in that wall-surface temperature
at {=0. Then the heat flow ¢(f) due to a temperature
history T'(t) of the heated surface that is continuous and is
zero when =0, but is otherwise an arbitrary variation, can
be expressed by Duhamel’s integral in the form indicated in

@

h(Taw'—T)=K(aT/bx)z-l

T=0 (t=0)

the following equation, 7’ represents(—% T() and 7 is a dummy

time variable:

¢,
a)= [ Te—nawir (5)
A heat balance is formed at 2=I by equating the integral in
equation (5) to the left member of the boundary condition
expressed by equation (3):

t .
MTu—T)= [ T(t—n)0,0r ©)
The determination of T from equation (6) establishes the
solution.

The wall temperature 7 is determined, in general, from
equation (6) for thermally thin, thick, and infinitely thick
walls. The method first discussed is based on thick walls,
and modifications of this method are introduced for the
special cases of thermally thin and infinitely thick walls.

SOLUTION FOR THERMALLY THICK WALLS

Time series.—In the calculation of wall temperature T’
526697—060—58
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for thick walls, the right-hand member of equation (6) is re-
‘placed by the product of two time series. As explained in
detsil in appendix A, a time series is the value (here the
ordinate) of a function of time at successive equal incre-
ments of time §. Thus, any variation of wall surface tem-
perature can be expressed as the series

T=T1, Tg, Ta,' .« . . Tm (7)
When a wall surface has a unit triangle variation of surface
temperature, the surface temperature increases from 0° at a
constant rate to & value of 1° at the time ¢=4§ and decreases
at a constant rate to the value 0° at t=25. The heat flow
corresponding to a unit triangle variation of surface tem-
perature can be expressed by the series

®)

The product of equations (7) and (8) gives the instan-
taneous values of heat flow due to the temperature varia-
tion given by equation (7) and could be used to eliminate
the integral in equation (6). However, a slight variation
or refinement of the method is introduced which has been
found to increase the accuracy of the results without in-
creasing the labor involved.

If m represents the term number of a time series, the prod-
uct mé represents the corresponding time. The refinement
consists in averaging the heat flow from the time (m—1)s to
the time mé. Let ga,m represent the average heat flow over
this interval due to a triangular variation in surface tempera-
ture. Then the heat-flow history due to the triangular
temperature variation can be represented by the series

Qa=4qa,1,94,2,qa,3, - - - Qa,m

&)

where Ga,; i8 the average for the time 0 to 3, Ga ¢ is the average
for time & to 28, and so forth. ‘

The heat-flow history expressed as the average heat flow
over successive increments §, but due to the temperature
variation (7), is given by. the product of equations (7)
and (9):

§=(T1; Tz) Ts: ..

G2a=0a,1, §A,g, agy » -« - Qam

. Tm) (QA.I: §A,2, -Q-A,a, <. QA.m) (10)

Such a multiplication actually gives the result by forming
' the proper superpositions, as demonstrated in appendix A.
In order to adjust the boundary condition expressed by
equation (3) or the left-hand side of equation (6) to represent
an average flow of heat G» over the interval §, the average
flow of heat from the boundary layer is approximated by
the mean of the values at the beginning and end of the in-
terval. Thus, for the interval ending at =ms§, G has the
value

§m=% [hm(Taw_ﬂm_l"hu—l(Taw_Z,)m—l] (11)

If radiation is important to the problem, it may be in-

cluded. Let r, be the rate of heat radiation per unit area
at the time ms. Equation (11) may then be written

§m=% [hn(Taw_T)m""rm'l'hm—l(Taw_ZT)m—l-rm-—I] (11a)
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With or without radiation, the heating history, or varia-
tion of g, may be expressed by the series

12)

wherein each term has the value given by equation (11) or

§=§l: ?1-2’ §3: s . §m
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-q-m= (le TQ) T3) . . ‘QA.H‘I)

(13)
In order to evaluate equation (13), the product in the

right-hand member is expanded by algebraic multiplication
and values of both members of the equation pertaining to

.Ql: éﬂ; -QS; . Tm) (-q'A,I: gﬂ.ﬁ! Qﬂ.ﬁl .

(11a). Equating the average heat flow given by equation equal time ‘are equated. The following set of equations
(12) to that given by equation §10) yields results (for simplicity, the radiation terms are not written in):
1 -
2 U (Lo D) b Tl = T ]
1: - -
3 Ve (Taw—T) 2+ (Tao—T)1]=T2ga. 1+ T1Ga,e r ’ (14)
1 - - -
5[hm(Taw_ﬂm+hm-l(Taw—11)m—l]=anA.l+T —l!lA.2+ L) +TIQA,13
N o
Eguations (14) can be rearranged to obtain the equivalent equations for 7%
T __thaw,l‘l'hoTaw.D - h
! ?-@A,l'l'hl
T __hZTaw,2+hl Taw.l—th1_2Tl§A,2
z 2§A,1+hz L (15)
(hTaw)m’i_—(hTaw—hT)n— —2@AiT —I+QA.3Tn—2+ . +§A,mTl)
ZQA 1+ Pem 7

The values of Ga » must be derived.

Average heat flow due to unit triangle variation of surface
temperature.—In order to obtain the average heat flow due
to a unit triangle variation of surface temperature, the
average heat-flow rate ¢ due to a uniform increase in the
surface temperature of 1° in each unit time & must be
obtained. The average is taken over the time & by inte-
grating the instantaneous heat-flow rate from t=(m—1)3 to
t=m3 and dividing by 8. This determination is carried out
in appendix B. The result is

= (A1) (16)
In equation (16), A, and A, are the summations
—m@n—l)i '_35 b
E e
iz ];f (2n—1)*
e an
—(m—l) @n—n!——
_1=Z
asl 7 kS
! 7 @D J

and @ is the heat capacity of the wall per square foot per °F
and is the product of weight density, specific heat, and wall
thickness:

G=pcl (18)

The average heat flow due to a unit triangle variation of
surface temperature ga, » is obtained by the superposition of

the heat flows g due to three linear variations of wall tem-
perature as follows (for further details, see the development
of equation (A1) in appendix A):

(19)

Eﬂ. m=§ﬂl—2§ru—l+§m—2

" Expanding equation (19) by substituting for gn from equa-

tion (16) gives

gA.m=;%:(§+Am'—Am—l —2 (ﬂ'_;"l'Am-—l_-Am—Z)"I—

(g+Ani—dn-s) | (20)

Substituting in equation (20) successive values of m, starting
with m=1, ignoring any parenthetical group in which nega-
tive subscripts appear, and collecting terms result in the
following equations:

-q—A,l SG Tz'l"Al_‘Ao) W

- 8G

qa, 2= T_’5< E"I‘Aa 3A1+2A0>

Gos=o0 (4434t 3A—A) + @1)
qA m= 71"8 (A 3Am—1+3Am—2—'Am—3) )
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For convenience, the quantities in parentheses can be tabu-
lated. The quantities in parentheses usually retain sig-
nificant values after the completion of the temperature
triangle which created them. For this reason, in accordance
with the notation of reference 4, they are called memory
terms and are designated by the symbol M. With this
notation, equations (21) become

- 8G ., O

!ZA,1=1‘—_23 M,
8@

qA,2=F’§ Mz

(21a)

.......

Hence, the following equations for memory terms are
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established :

N

M 1 =%2'+A1—‘A0
L
M, =——8‘+A2_3A1+2A0
> (22)

My=A4;—3A4,1+34,—4,
M A 3Am—l+3Au—- AH‘I—-3 J

Obviously, the values of A are combinations of the values
of 4. Values of A and M were computed for a range of
values of £5/F% and the memory coefficients A£ are listed in
table I. The value of M decreases with increasing term
number and sooner or later further terms can be neglected.

Resulting temperature formulas.—Equations (21a) give
the value of Ga, sought to complete equations (15); there-
fore, equations (21a) are substituted into equations (15).

The result can be simplified by dividing through by 16G/#% and letting

h

"

(23)

If radiation is important, the appropriate terms are included ‘t;y \using equation (11a) rather than equation (11).

Since

equations (15) are being divided through by 16@G/#%3, the radiation term R is defined as

r

" '

With the substitutions of equations (23) and (24) in equations (15), the final results, including terms for radiation, are

T Hl aw. 1+H0 aw, 0™ RI_RO
e M1+Hl N\ R
T _HTou 2+ (HT—HT)—M,T'— R;—R,
: M+H,
. —FsTuns+ (ATu— HT),—M,T,—M;Ti— Ry— R, - (25)
: M+ H,
T _(HTaw)m+ (HTaw_HT')m—l_Msz—l_MaTn—-2_' .. —MmTl—Rn_Rn-—l
Ml"l‘Hm o

SOLUTION FOR INFINITELY THICK WALLS

General considerations.—If a wall is thermally very thick
and is heated rapidly so that the unheated side experiences
little heating, it is convenient and accurate to assume that
the wall is infinitely thick. The same formulas, equations
(25), are used to compute the wall surface temperature.
However, instead of the values of M for a particular wall
or diffusion number, the values of A4 which are used are
always a fixed set of numbers which are now de.nved The
values of H and R are also changed.

Determination of average heat flow due to unit triangle
variation of surface temperature.—The determination of the
heat flow due to & unit triangle variation of surface temper-
ature of an infinitely thick wall depends upon the instanta-
neous heat flow into the surface due to a unit rise in surface
temperature in unit time. From page 110 of reference 5,
the instantaneous heat flow is equivalent to 2KA/tArk-
Since the heat-flow rate is proportional to the surface-
temperature slope, the instantaneous heat transfer due to
unit rise of surface temperature in the time & is 2K/1/sv/7k-
This expression is integrated with respect to ¢ between the
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TABLE I.—VALUES OF M AND ¢

ka/l‘m
0.01 0. 02 0. 05 0.1 . 0.2 0.5 1.0 2.0 5.0
m
M
1 0.09280547 | 0.13124675 | 0.20751933 | 0.29347652 | 0.41495635 | 0.64728198 | 0.85683719 | 1.02054117 | 1.15145420
2 —.01592290 |—.02251838 |—.03560496 |—.05051887 |—.Q7836507 |—.22817155 |—.51142024 |—.82682860 |—1.06020821
3 ~—.020883275 |—.03794724 |—.06002546 |—.08722820 |— .14861561 |—.30052454 |— .31662013 |—.20127599 | —.08224564
4 —.00957529 |—.01354153 |—.02166582 |—.03696546 |—.07338883 |—.08405219 |— .02634648 |—.00142616 | — .00000036
b —.00553399 )—.00782683 |—.01320029 |—.02628367 |— .04463344 |—.02447704 |—.00223431 [~ .00001026 | — .00000000
6 —.00373390 |—.00528487 |—.00983261 |—.02025561 [—.02724662 |—.00712803 |—.00018948 {— .00000007
7 —.00274116 |—.00389296 |—.00809228 |—.01579610" |—.01663399 |—.00207577 |— .00001607 |— .00000000
8 —.00212390 |—.00304409 |—.006955694 |— .01233887 (—.01015501 |—.00060449 |—.00000136
9 —.00170880 |—.00249270 }—.00608368 |—.00964054 {— .00619962 |— .00017604 |— .00000012
10 —.00141412 |—.00211864 |—.00535620 |—.00753254 (—.00378485 |—.00005126 |— .00000001
11 —.00119615 | —.00185533 |—.00472749 |—.005885560 {—.00231065 {— .00001493 |— .00000000
12 —.00103005 |—.00166301 |— .00417648 |—.00459860 |—.00141064 |—.00000435
13 — .00090058 |—.00151702 |— .00369098 |[—.00359308 |—.00086120 |— .00000L27
14 —.00079788 |—.00140175 }—.00326234 |—.00280743 |—.00052576 |— .00000037
15 —.00071529 (—.00130717 |—.00288362 |—.00219357 |—.00032097 {— .00000011
16 —.00064810 |—.00122687 |—.00254891 |—.00171393 |—.00019595 |—.00000003
17 —.00059290 |—.00115666 |—.00225306 |—.00133917 [—.00011963 {— .00000001
18 —.00054712 |—.00109383 |—.00199156 |—.00104635 }—.00007303 |— .00000000
19 — .00050881% —.00103658 {—.00176041 {—.00081756 |— .00004459
20 —.00047651 |—.00098373 |—.00155609 |— .00063880 |—.00002722
21 —.00044899 }—.00093448 1—.00137549 |—.00049912 j—.00001662
22 —.00042532 |—.00088827 |—.00121584 |—.00038998 |—.00001015
23 —.00040477 1—.00084473 |—.00107473 }—.00030471 |— .00000619
24 —.00038676 |—.00080356 |— .00094999 |—.00023808 |—.00000378
25 —.00037081 |—.00076455 |—.00083973 |—.00018603 |— .00000231
26 —.00035655 |—.00072753 |—.00074227 {—.00014535 |— .00000141
27 —.00034368 {—.00069237 |—.00065612 |—.00011357 |— 00000086
28 —.00033196 (—.00065895 [—.00057997 |—.00008874 |— .00000053 . .
29 —.00032119 {—.00062716 |—.00051265 |— .00006933 |— .00000032 )
30 —.00031121 |—.00059693 |— .00045315 |— .00005417 |— .00000020
9
1 1.0G0000000 | 0.99999992 | 0.99956262 | 0.98873183 | 0.92596579 | 0.69945453 | 0.45623855 | 0.24814441 | 0.09099955
2 —.00000015 [—.00019241 |—.02166158 |—.12553206 |—.31355030 |— .48643195 |—.41618829 |—.24630216 | —.09999900
3 —.00002494 [—.00333067 |—.069683676 |—.17636953 |—.23787104 |— .15008748 |— .03665380 |—.00182900 | —.00000045
4 —.00033480 |—.01195026 |—.09012904 |—.14882949 |—.14587796 |— .04396967 |— .00310842 |—.00001315 | —.00000000
5 —.00144190 {—.02167828 [—.08988006 |—.11749067 [— .08906596 |—.01280454 {— .00026361 |— .00000009
6 —.00344276 |—.02004775 |—.08284990 |—.09193126 |—.05437468 |— .00372885 |—.00002236 |— .00000000
7 —.00595602 |—.03361673 [—.07435643 (—.07184409 |—.03319564 |—.00108589 (— .00000190
8 —.00854573 {—.03599626 |—.06609621 |—.05613647 |—.02026587 |— .00031622 |— .00000016
9 —.01092537 |—.03687746 |—.05854671 |—.04386205 |—.01237227 |— .00009209 |— .00000001
10 —.01296010 {—.03679326 |—.05179171 |—.03427135 |—.00755325 |—.00002682 |— .00000000
11 —.01461453 }—.03611078 }|—.04579381 |—.02677771 {— .00461124 |—.00000781
12 —.01590835 |—.03507183 |—.04048318 |—.02092260 {— .002815616 |~ .00000227
13 —.01687671 |—.03383230 |—.03578599 {—.01634774 |— .00171865 |— .00000066
14 —.01757370 |—.03249148 |—.03163302 (—.01277320 [—.00104923 |—.00000019 .
15 —.01804423 {—.03111189 |—.02796174 |— .00998026 |— .00064055 |— .00000006
16 —.01833036 |—.02973243 {—.02471645 [—.00779802 (—.00039106 |— .00000002
17 —.01846823 |—.02837687 |—.02184779 |—.00609293 |—.00023874 |— .00000000
18 —.01848809 |—.02705931 }—.01931206 |—.00476067 |—..00014575
19 —.01841484 {—.02578769 |—.01707064 {—.00371972 |— .00008898
20 —.01826874 |—.02456607 |—.01508936 |—.00290638 |— .00005432
21 —.01808620 |—.02339609 |—.01333804 }— .00227088 {— .00003316
22 —.01782042 |—.02227782 |—.01178998 |—.00177434 |— .00002025
23 —.01754197 |—.02121043 |—.01042159 {—.00138637 |— .00001236
24 —.01723931 |—.02019254 |—.00921203 |—.00108323 |—.00000755
25 —.01691918 |—.01922244 |—.00814285 |—.00084638 |— .00000461
26 —.01658695 |—.01829828 |—.00719776 |—.00066131 |—.00000281
27 —.01624686 |—.01741811 |—.00636236 |—.00051671 |—.00000172
28 —.01590229 |—.01658000 |—.00562392 |—.00040373 |~ .00000105
29 —.01555588 |—.01578203 ;—.00497119 |—.00031545 }|— .00000064
30 —.01520972 |—.01502236 |—.00439422 |—.00024648 |— .00000039

» For additional value of k3/I2, see table II.

limits (m—1)§ and mé. Dividing by & gives, for the | slope function to that of the unit triangle input function is
average heat-flow rate g over the interval § terminating | accomplished by substituting equation (26) into equation

at ms, (19):
- 4K
= [m¥%—(m—1)%] (26)
3+/wkd = 4'K__ — —1)3% — N (m—13) ¥

The usual superposition required to change the result of the @7
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Resulting temperature formulas.—If the bracketed quan-

tity in equation (27) is designated as the memory coefficient
M, then
Mu=[m—3(m—1)5+3(m—2)%—(m—3%  (28)

. A dimensionless heat-transfer coefficient (suggested by eq.
(27)) is defined as

__ 3h~/wkd
H.,= 3K 29) -
and a corresponding term for radiation is defined as
_ 3ryfwks

The substitution of equation (27) into equations (15) again
results in equations (25). Hence, equations (25) are used to
obtain the heated-surface temperature of the infinitely thick
wall as well as of walls of intermediate thickness, except
that A, H, and R for infinitely thick walls are defined by
equations (28) to (30). Inspection of equations (28) to
(30) indicates that the wall material properties and time-step
size are expressed by equations (29) and (30), while the mem-
ory terms are invariant with wall properties or step size.
Substituting successive integers for m from 1 to 20 into
equation (28) gives the following corresponding values of A:

M=1.0
M,=—0.171573
My=—0.289129
,=—0.103176
My=—0.059630

My=—0.040234
My;=—0.029536

M,=—0.022885

My=—0.018412
BIIO= —0.015232
1-‘1]1= —0.012874

M=—0.011069
Myy=—0.009650
AM;,=—0.008511

Myy=—0.007580 )

Mip=—0.006807
M= —0.006157
M= —0.005605
M= —0.005130
Miy=—0.004719

@1

These values of M, along with values of H. and R, from
equations (29) and (30), can be used in all problems wherein
the wall is so thick relative to the heating rates and times
involved that the wall behaves as though it were infinitely
thick.

THIN WALLS

When a wall is thermally thin, the temperature drop
through the wall becomes negligible and the problem is
simplified by assuming that all interior temperatures are
equal to the surface temperature.
the wall during any time interval § must be equal to the
gain in enthalpy or total heat during this time. Hence,

‘-l'ﬂl:%' (GuTn—Gm—l u—l) (32)

Equating the average rate of gain in enthalpy as given by
equation (32) to the average rate of heat transfer through
the boundary layer as given by equation (11a) results in

The heat absorbed by
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the following heat balance:
hn(Taw_T)m'_ m""hm—l (Taw_T)u-l'_'

raci=2 [(@T)n—(@Dnmi]  (33)

Solving for T,; gives

h’lTaw. 1+hnTaw,0_h0T0+§' GoTo_f‘l—ro
T,

2
3 G +hy "

2
hzTaw.2+h1Tam, 1—h1T1+g G1T1"‘"2_r1

T, 5
3 Gat+hy

- (39

. b T ,,.+(hT,m K72 GT) s

g m+h~n

o

Any variation of @ with temperature is accounted for by
equations (34). If the wall properties do not change over
the temperature range covered, obviously, @ is a constant.
If @ is considered to be constant, equations (34) can be
derived from equations (25) as follows: As the diffusion
number k5/* becomes large, all values of A approach the
value #*/8, and from equations (22) it is seen that the only
memory terms not identically equal to zero are 3, and M,
which have the values #*/8 and —#*/8. Eliminating 3 from
equations (25) and utilizing definitions (23) and (24) yield
equations (34).

In equations (34) the terms kg, Tyw0, and Ty have been
retained since in the thin-wall problem, unlike the thick-wall
problem, it is convenient for 7 to have any value. These
equations have considerable advantage because the need
for temperature extrapolation is reduced, if not eliminated.
The equations tend to give accurate results and, as is shown
subsequently, are suitable for the use of relatively large time
increments. )

INSIDE TEMPERATURES

If the heated wall surface is called the outside surface,
the temperatures at other parallel planes may be called
inside temperatures. In particular, this paper is concerned
with the inside surface temperature. According to the
notation used in this paper, the inside surface is designated
by x/l=0, the outside surface by z/l=1, and other planes by
values of z/l between 0 and 1.

Consider a wall, initially at zero temperature, which has
the heated surface #=I[ raised at a reference temperature
slope T'=(1/5)t, while the surface =0 is insulated. The
difference in temperature 8, between the heated surface and
any plane z is shown by equation (B11) of appendix B to be

BTy (—1)m1
01-—F ES{,‘?;’; @n—1y° cos I:(Zn n= "l — \

1 TR
orth)

>ty eos| e}



884

A set of terms is defined to represent the summations in
equation (35):

16 2 & (—1)#! T h
NIz
Bo=1% 15 21 Gn—1)° (2” )57
16 I2 &, (—1)*! 1r9: m—n"{,ﬁ,s
B, 7 T3 2l 1) cos (2n 1) |
- = 36a)
16 I* &, (=D 2] —2em-miihs
By= 7 T 2l GBIy cos _(2n 1) 37
16 12 & (—1)*? B x| —m@n— D’TTE"
B,= =3 “;?1 17 cos _(2n 1= 57 |¢ )

If the temperature difference across the entire wall is sought,
then z/l=0 and equations (36a) become

16 2 (_1)n—1 b
mﬂka,,zz.}L(zn—na 2Ica
_le &2 e VA L
71'3 k&,,zuz EZn—)l)a e —@n—1)? 5’ )
_lsn —1 SE L 36b
Gl ,,Z.} Eanl)ae—z(m—l)’Tﬁa (36b)
16 12 (=11 _ m_l):ffg

Bn= ﬂﬂkag(zn P 78"

Regardless of whether equations (36a) or (36b) are used,
equation (35) may be written

6,=B;—DBn 37).

By the usual superposition, in order to change the result
of the reference slope function to that of a unit triangular
‘input function, the temperature difference between the plane
of the heated wall and the plane being considered is

6=By—Bn»—2(By— Bn-1) +Bo—Bn— (38)
Assigning integral values to m and simplifying give the
equations corresponding to successive values of time:

-

6= _BI+BO

92=—Bz+2Bl—

03=—B3+2B2_ \ (39)
6,=—DB+28B;—B, _
0m=—'Bm+2-Bm—-l_Bn—2d

A sufficient number of values of ¢ for practical purposes are
given in table I. According to equations (39), the tem-
perature difference between the plane of the heated surface
and any other plane due to a unit triangle temperature

.outer surface.
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variation of the heated surface would be given by the time
series 0,=0;, 6;, 03, . . . 0n. In addition, any general tem-
perature of the heated surface can be represented as 7="1T,
Ts, T3, . . . Ty The temperature difference due to this
general temperature variation is obtained by formally
multiplying these two time series, and the inside temperature
is obtained by subtracting the product from the heated-
surface temperature 7. Hence

TL1=TI—01T1
Tt.2= Tz_ (01T2+52T1)
T£3=T3"(91T3+92T2+03T1) (40)

Computation of T, does not depend on prior computation
of Ty, T4s, and so forth.

If the temperature distribution through the wall is required
in a form which is analytical with respect to z and can be
differentiated or integrated analytically with respect to z,
the procedures outlined in appendix C should be followed.

CALCULATION OF HEAT FLOW FROM TEMPERATURE
HISTORY

TEMPERATURE HISTORY OF OUTSIDE SURFACE KNOWN

If the heated-surface temperature history is known, the
heat-flow history can be determined by substituting equa-

" tions (21a) into equation (10) as follows:

—_% (Th T2) TSJ .. T") (Ml’Mg’ﬂls, te ZVIM) (41)

Multiplication shows that the mth term is given by

g LA M T .. +M,T)  (42)

The heat-flow history can be determined readily from a given
temperature history of the heated surface by means of
equation (42). The average heat flow over a small interval &
can be assumed to give the instantaneous rate at the cenler
of the interval.

TEMPERATURE HISTORY OF INSIDE SURFACE KNOWN

If the temperature history of the outer surface or of a
plane near the outer surface is kmown, the feasibility of
accurately determining the heat flow is excellent. If the
temperature history of the inside surface for a thermally
thin wall (%#/* large and RI/K small) is known, it is also
feasible to determine the history of the heat flow into the
However, if the wall is thermally thick,
relatively small changes in temperatures at the inside surface
may make it difficult to reconstruct the temperature history
and heat flow at the outer surface.

A rearrangement of equations (40) may be used to deter-
mine the outside-surface-temperature history from the
inside-surface-temperature history. Rearranging equations
(40) gives
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T 3
Tl _1'—01
_ Tyt
T 11—,
T Ty 51+0,T04-0,T, >~ (43)
8 1—6,
T _Tt.m+02T —l+03T ...+ 0,1y
" 1_01 . J

The rate of heat flow at any time is then determined from
equation (42),
APPLICATION
GENERAL CONSIDERATIONS

The section on application is devoted to demonstrating
the solution of two types of problems: In the first type the
heat-transfer coefficient and adiabatic-wall-temperature
histories are given and the ,wall-temperature solutions are
obtained. In the second type the temperature history is
known and the heating-rate history is computed. In each
example, the problem chosen was a special case, selected so
that its solution could be and was obtained by an exact
analytical method. The degree of exactness of the present
method is demonstrated by comparing each result with the
golution calculated by exact theory.

With one exception, radiation was a negligible considera-
tion in the examples given. Although the method presented
is well suited to accounting for radiation and includes terms
for that purpose, radiation was neglected in all cases to make
possible an exact analytical solution for comparison.

EQUATIONS FOR HEATED SURFACE

If the temperature of the heated surface of the wall is
required, equations (18) and (23) to (25) are used. Whether
the objective is to compute wall temperature or to compute
the heat flow from a known wall temperature, the first steps
involve the determination of the required memory coeffi-
cients. In order to minimize the labor involved, the recom-
mended procedure is as follows: First, choose a tentative
time interval & which seems appropriate to the particular
problem. (A review of the examples presented herein will
give an idea of a reasonable value.) Then compute a tenta-
tive value of the dimensionless diffusion number 25/*. From
table I or I pick a diffusion number close to the one tenta-
tively computed. The memory coefficients M and ingside
temperature coefficients 6 given in the table for this diffusion
number are to be used, and they do not therefore have to
be computed. An adjustment in the value of § is made by
multiplying it by thle ratio of the tabular value of ks/?
selected to the value of %§/I* tentatively computed. Then
compute from equations (18) and (23) the value of @ and
the values of H; if the radiation is important, B must be
computed also (eq. (24)).” The temperature history of the
heated-well surface is then found from equations (25). If
the heating rate is being determined from a known tempera-
ture history, the values of A and R are not required. The
procedure for this case is discussed in the section entitled
“Example 6.”
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The temperature formulas were derived with the assump-
tion that the initial wall temperature was zero in order to
avoid writing 7-7, numerous times in the formula. The
simplest way to handle most problems is to subtract the
amount that the initial wall temperature is above zero from
both the wall and the adiabatic-wall temperatures. The
last step in the problem is to add this amount to the solution.

EQUATIONS FOR INSIDE SURFACE

If the temperature of the unheated side of the wall is
required, equations (40) are used. Except for the case of
the thermally thin wall, all equations were derived for con-
stant material properties. For small changes in material
properties with temperature, it appears reasonable to use
an average value of the properties for the temperature range
involved. For cases in which material properties vary, it
seems possible that a more accurate solution might be ob-
tained by varying the diffusion number or by varying the
step size to keep the diffusion number constant; however,
any consideration of such a technique is beyond the scope
of this paper,

APPLICATION OF METHOD IN SPECIFIC EXAMPLES

The following illustrative examples were calculated before
table 1 was prepared. Therefore, the values of the coeffi-
cients M and 6 were computed for the particular walls and
chosen time intervals & of the examples. All values of M
and 6 used are listed in table II, which may be considered
as being supplementary to table I.

EXAMPLE 1

Problem for example 1 (a).—A copper wall which is ¥
inch (% ft) thick is initially at a temperature of 0° F. One

_surface is heated by a boundary layer while the other side

is insulated. The effective boundary-layer temperature 7%,
is initially 0° F but increases linearly at the rate of 1,000° F
per second for 10 seconds. The heat-transfer coefficient
remains constant at A=100 Btu/(hr)(sq ft)(°F). The con-
ductivity K and diffusivity & of copper are taken as

K=227(Btu)(ft)/(br)(sq {t)(°F)
k=441 sq ft/hr
Find the temperature history of both wall surfaces.

Solution for example 1 (a).—The material properties are
usually given¥in terms of the hour unit. However, since
fast heating conditions may be more easily understood in
terms of seconds, time is referred to in seconds and‘is con-
verted to hours for use in the equations. For example, if

1
=1 sec=gens br
then
ks (4.41)(24)2
I* 73600
By using this dimensionless diffusion number, the values of
M in column 2 of the following table are obtained from table

II. The values of T, are listed in column 4. The value of
@ is given by the equation

Kl 227
E o (24)(4.41)

=0.7056

a

2.1447 Btu/(sq £t) (°T)
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TABLE IL.—VALUES OF M AND ¢ USED IN ILLUSTRATIVE EXAMPLES

Eafi2
\/ 0. 00980 0. 08820 0. 17640 0. 35280 0. 70560
m
M

1 0. 09187272 0. 27561815 0. 38974074 0. 54911553 0. 75160198
2 —.01576287 | —.04735407 -| —.07101815 | —. 14414261 | —. 35255882
3 —. 02656306 | —.08094552 | —.13303643 | —. 24244300 |  —. 33055113
4 —.00047905 | —. 03275208 | —.06587120 | —.09447354 | —.05648228
5 —. 00547837 | —.02295825 | —.04229223 | —.03955774 | —. 00990390
8 —.00369637 | —.01799364¢ | —.02736081 | —.016566451 | —. 00173680
7 —.00271361 | —.01440765 | —.01770513 | —.00693626 | —. 00030451
8 —.00210254 | —. 01158046 | —.01145704 | —.00290451 | —. 00005339
9 —.00160169 | —.00931431 | —.00741389° | —.0012162%4 | —. 00000936

10 —. 00139980 | —. 00749250 | —.00479755 | —.00050929 | —. 00000164

11 —.00118389 | —.00602714 | —.00310451 | —.00021326 | —. 00000029

12 —.00101926 | —.00484839 | —.00200894 | —. 00008930 | —. 00000005

13 —.00089082 | —.00390018 | —.00129999 | —.00003739 | —. 00000001

14 —.00078882 | —. 00313741 | —.00084123 | —.00001566 | —. 00000000

15 —.00070868 | —.00252382 | —.00054436 | —. 00000656

18 —. 00063977 | —. 00203023 | —.00035226 | —.00000275

17 —.00058474 | —.00163317 | —.00022795 | —. 00000115

18 —.00053905 | —.00131377 | —.00014761 | —. 00000048

19 —.00050081 | —.00105683 | —.00009545 | —. 00000020

20 —. 00046851 | —.00085014 | —.00006177 | —. 00000008

[/}

1 1. 00000000 0. 99289947 0. 94364543 0. 80477935 0. 58038199
2 —.00000012 | —.09850808 | —.27773216 | —.44879472 | —. 47483257
3 —. 00002053 | —.15766415 | —.23367386 | —.20690077 | —. 08720876
4 —.00028945 | —.14162795 | —.15250956 | —. 08665088 | —.01529129
5 —.00128807 | —. 11603872 | —.09871526 | —.03628441 | —.00268126
6 —.00314564 | —.09364233 | —.06387047 | —.01519382 | —. 00047015
7 —.005562973 | —.07537042 | —.04133662 | —.00636230 | —.00008244
8 —.00802789 | —.06063594¢ | —.02674908 | —.00266417 | —.00001448
9 —. 01035556 | —.04877804 | —.01730940 | —.00111560 | —. 00000253

10 —.01237062 | —.03923850 | —.01120097 | —.00046715 | —. 00000044

11 —. 01402862 | —. 03156453 | —.00724818 | —. 00019562 | —. 00000008

12 —. 01533940 | —.02539137 | —. 00469032 | —.00008191 | ~—. 00000001

13 —.01633809 | —.02042551 | —.00303512 | —.00003430 | —. 00000000

14 —. 01706855 | —.01643084 | —.00196404 | —.00001438

15 —. 01757475 | —.01321741 | —.00127093 | —. 00000601

16 —.01789689 | —.01063245 | —.00082243 | —. 00000252

17 —.01806093 | —. 00855303 | —.00053219 | —. 00000105

18 —.01812340 | —. 00688029 | —.00034438 | —. 00000044

19 —.01808182 | —.00553469 .| —.00022285 | —. 00000018

20 —.01796520 | —.00445226 | —.00014421 | —. 00000008

The value of A=100 Btu/(hr)(sq ft)(°F) is converted to
H=0.00800. The use of columns 2 and 4 in equations (25)
gives the heated-wall temperature in column 5. TUsing the
inside-surface-temperature formulas, equations (40), and
the values of 6 in column 6 gives the values of 7’ in column 7.

1 2 3 4 5 6 7
Term M Time, | Tow, T 8, T,
number sec °F oF °F oF

0 | oo 0 0 0 | e 0

1 0. 75160 1 1, 600 11 0. 580382 4

2 —. 35256 2 2, 0600 36 | —. 474632 21

3 —. 33055 3 3,000 74 | —. 087207 50

4 —. 05648 4 4, 000 124 —. 015291 91

5 —. 00990 5 | 5,000 136 —. 002681 144

6 —. 00174 6 6,000 | 260 —. 000470 | 210

7 —. 00030 7 7,000 | 346 —. 000082 | 288

8 —. 00005 8 8,000 | 443 —. 000015 | 377

9 —. 00001 9 9,000 | 552 —. 000002 | 478

10 —. 00000 10 10 000 | 673 —. 000000 t 591

The wall-surface-temperature curves of 7 and I, are
shown in figure 1 (8). For comparison, the results calou-
lated by the theoretically exact formula (eq. (B10) of ap-
pendix B) are shown. This formula is

L
cos Gc- a,,) (l—e s )

(1+%+—I£ oy ) COS aty

1o
T=bi—2b - )

n-l

(44)

where b represents the slope of the adiabatic-wall-tempera-
ture curve and «, represents the positive roots of the auxil-
iary equation

a, tan a,.=% (44a)
Setting $=3,600,000 °F/hr and setting z=I! and =0 in
equation (44) result in the values for outside and inside
temperatures plotted as circles and squares in figure 1.
The comparison shows that accurate results are obtained

'
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(a) Y-inch-thick wall.

Fraure 1.—Example 1. Temperatures of copper-wall surfaces.
Adisbatic-wall temperature varies linearly from 0° to 10,000° in
10 seconds; k=100 Btu/(hr) (8q £t) (°F).

by the present method, the maximum difference between
methods being about 1°. ’

Problem for example 1 (b).—The conditions for example
1 (b) are the same as those for example 1 (2), except that
the copper wall is 3 inches thick, or I=Y foot.

Solution for example 1 (b).—Since this wall is so thick,
more highly transient conditions prevail throughout the
heating period. A value of § of ¥ second or 1/7200 hour
was therefore used. With the same procedure as used be-
fore, the results of the present method are given as con-
tinuous lines in figure 1 (b), while the results from equation
(44) are given by the symbols. The agreement is evident.

EXAMPLE 2

Problem,—Example 2 illustrates the principal advantage
of the present method; that is, its capability of handling
arbitrary variations of T, and h. Neither is it necessary
to know a mathematical formulation for these variations.

A ¥-inch copper wall which is initially at a temperature

887
400
’ (b) Outer surface| Present method;
—— —— Inner surface 3=1/2 sec
o Quter surface
450 o Inner surfuce} Exact theory )
300

Wall surface temperature, °F
5,
o

50 Va
/
L .GL————*r’/j)

(0] 2 4
Time, sec

(b) 3-inch-thick wall.

Ficore 1.—Concluded.

of zero is aerodynamically heated on one side and insulated

on the other. The time histories of T, and A are given at
%-second intervals in the following table:
Time, - h, Btu/(hr) || Time, Tawy h, Btu/(hr)
sec °F (8q £6) ( (311{‘) sec °F (sq ft) ( Q]IJ?-‘)
0 0 36 5.5 5,391 68. 4
.5 1, 365 41. 4 6.0 5, 356 66. 6
1.0 2, 485 15. 0 6.5 5, 255 63. 9
1.5 3, 388 48. 6 7.0 5,107 60.0
2.0 | 4,094 52.2 7.5 | 4831 55. 8
2.5 4, 620 55. 8 80 4, 335 52. 2
3.0 4, 932 60. 0 85 3, 654 48. 6
3.5 5,119 63. 9 9.0 2,769 45.0
4.0 5, 263 86. 6 9.5 | 1,658 41. 4
45 5, 345 68. 4 10. 0 297. 5 36.0
5.0 5, 387 69. 0

The temperature history of both wall surfaces is to be
found.

Solution.—The heating conditions are severe and con-
tinuously transient, with the boundary-layer temperature



rising and falling over 5,000° in 10 seconds. A computing
interval & smaller than that used in the first problem is
therefore used. Let =% second=1/7200 hour. The re-
sulting wall-surface-temperature curves are drawn in figure
2. The circles and squares give the surface temperatures
computed by a theoretically exact procedure. Comparison
shows the present method to be accurate.
EXAMPLE 3

Problem.—Example 3 is the same as example 2 except
that the wall is 3 inches thick and the effective boundary-layer
temperatures are slightly different. The initial value of
T4 is 0. The subsequent values of T, are given at 0.5-
second intervals by the following time series: T,,=1,365,
2,484, 3,386, 4,088, 4,609, 4,915, 5,094, 5227, 5296, 5,325,
5,315, 5,265, 5,149, 4,086, 4,604, 4,184, 3,489, 2,591, 1,471,
100. Find the temperature history of both wall surfaces.

Solution (a) (thick-wall solution).—The value of § was
taken as Y second. By following the procedure previously

360 Outer surface] Present method;
—— —— Inner surface 5=1/2 sec
3 orer surtece} exact theory
320
280 7
/
o
240 / /
2l
& /
N/
g0 s
g y
g i/
5 160 /
- /
§ / ?j
120 %
/\/
o
80 4/
/
/)
40
/ /.
/
0 2 4 6 . 8 10

Time, sec

Frauvrs 2,—Example 2. Temperatures of }4-inch copper wall heated
according to assigned history of k and Tau.
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presented, the wall-surface-temperature curves shown in
figure 3 were obtained. Again the symbols give the results
of exact theory.

It should be noted that the “‘exact solution’ for examples
2 and 3 is not actually an alternate method of solution for
any practical problem but gives a solution to the particular
problems only. The ‘“‘solution’” was obtained by working
in reverse; that is, a heat flow was assumed and the corre-
sponding boundary-layer characteristics were computed.
A truly alternate method of solution is now considered,
however.

Solution (b) (infinitely thick-wall solution).—Since the
thermal lag of a 3-inch copper wall is so great when subjected
to the rapid heating specified by this problem, it appears
reagsonable to obtain the heated-surface temperature by
assuming that the~wall is infinitely thick. The memory
coefficients are the same for all infinitely thick walls and are
given by equations (31). The same temperature formulas,
the same values of T, and the same values of & are used
as before, but the values of H,, are given by equation (29).

| The results calculated by this method are listed along with

160

Outer surface
——— —— Inner surface

Present method;
8=1/2 sec

o  Outer surface
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Figure 3.—Esample 3. Temperatures of 3~-inch copper wall heated
according to assigned history of & and 7.
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those from the thick-wall solution (a).

T, °F, calculated by—
Time,

sec Thick-wall | Infinitely

solution thick-wall

solution
1 12. 8 12. 8
2 35.3 3b.3
3 61. 3 61. 3
4 87.0 87.0
b 109. 1 109. 1
6 124. 8 124. 8
7 132. 3 132. 3
8 130. 6 130. 6
9 119. 5 119. 4
10 100. 0 99. 8

The consistency of the alternate methods for & thermally
thick wall is evident. The reason for the close agreemeng
may be found in figure 3, which shows that the unheated
surface of the 3-inch wall rose to only 14° F.

EXAMPLE ¢

Problem.—The most severe test of the present method
would occur if there were a large instantaneous increase of
Top.  While this condition could hardly happen in flight, it
might happen if a research model were suddenly immersed
in a high-stagnation-temperature jet. Let a X-inch coppér
wall, initially at a temperature of zero, be instantly subjected
to an effective boundary-layer temperature of 5,000° F on
one surface while no heat transfer occurs on the other sur-
- face. The heat-transfer coefficient is 100 Btu/(hr)(sq ft)
(°F). Solve for the temperature history of both wall sur-
faces for 10 seconds.

Solution.—In this case not only is there a very high
transient-temperature condition initially but the instanta-
neous increase in T, does not lend itself to approximation
by the unit triangle. The simplest procedure is to take
small steps for the first few seconds to minimize the errors
introduced. In order to help circumvent the difficulty of
calculation, an excellent method of approximating the wall
surface temperature for the first or first few small steps is to
use the following formula from page 109 of reference 5,
which gives the temperature on the surface of an infinitely
thick wall for a constant flow of heat at the surface:

2hT e [t
T _T\/; “5)

The values of 5 used were §=1 second for 2 seconds, then
d=1J4 second for 8 seconds. Since the use of an equation
based on an infinite wall is permissible for a ¥-inch copper
wall for at least } second, the values of 7' were computed by
equation (45) for the first two Y4-second steps, then by the
usual equations. The results are presented in figure 4.
Since the inside temperature T, depends on the outside
temperature 7’ and not directly on Ty, there is no particular
difficulty of approximation in obtaining 7). Accordingly,
in obtaining T, ¥%-second steps were taken for 1 second to
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Figure 4.—Example 4. Temperatures of M4-inch copper wall
after application of 5,000 °F jump in gas temperature. Ah=100
Btu/(hr) (3q £6) (°F). .

define the highly transient part of the curve, then Y4-second
steps for the remaining 9 seconds.

A theoretically exact solution to this problem was obtained
by equation (B7) of appendix B. The results of applying
this equation are given by the symbols in figure 4, which
shows that agreement was obtained.

EXAMPLE §

Problem.—A J-inch Inconel wall is heated by a high-
temperature jet. If Top=25,000° F and =50 Btu/(hr)(sq
1t) (°F), determine the skin-temperature history for 15 sec-
onds. Neglect radiation.

Solution.—The heat capacity of a ¥e-inch Inconel wall was
assumed to be G=0.3229 Btu/(sq ft) (°F). The example was
worked three times with values of § of 1, 2, and 5 seconds to
show how sensitive the “thin wall” formula is to the time
interval. ' Substituting the given constants into equation
(34) yielded the results given by the symbols in figure 5.
For this example the exact theory is shown by the solid line.
Evidently, large time intervals are permissible with this
formula. )
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Fiqure 5.—Example 5. Temperatures of]}e-inch Inconel wall
Ta0=5,000 °F; h=50 Btu/(hr) (sq £t) (°F).

EXAMPLE 6

Problem for example 6 (a).—The temperature history of
the heated surface of a ¥-inch copper wall initially at zero
temperature is given by the following time series in which
the temperatures are for }-second intervals: 7=4.8, 13.2,
25.2, 40.2, 58.2, 77.9, 99.4, 122.6, 146.3, 169.8, 193.0, 214.8,
235.3, 253.2, 268.8, 281.5, 290.8, 296.7, 298.0, 297.5. The
inside surface is insulated. Determine the history of heat
flow into the heated surface from the given surface-tempera-
ture history.

Solution for example 6 (a).—If the time interval used is
sufficiently small, the average rate of heat flow over the
interval is a good approximation to the rate of heat flow
at the center of the interval. Equation (42), which gives
the average rate of heat flow over the interval ending at
=md, may be used. For a value of 5 of ¥ second, the
values of A are given in table II. Substituting in equation
(42) gives the rate of heat flow plottéd as circles in figure 6.
The solid curve gives the theoretically exact instantaneous
rate of heat flow for comparison. The results from equation
(42) are seen to be precise. The system yielding instan-
taneous heat flow, mentioned previously, would seem to be
o natural one for the present problem; however, the results
obtained by that system were found to be inferior to those
presented.

Problem for example 6 (b).—The corresponding inside-
surface-temperature history of the same wall is given by
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450000
Exoct volues; /1= 360,000 sin (360 r#)

o Computed from outside-surfoce temperatures

a Computed from inside-surfoce temperotures
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FIGURE 6.—Example 6. Rate of heat flow into heated (outer) sur-
face of ¥-inch copper wall computed from temperature history of
outer surface and from femperature history of inner surface.

the following time series in which the temperatures aro for
Y-second intervals: Ty=0.8, 4.4, 11.7, 22.4, 36.0, 52.6,
71.6, 92.3, 114.2, 187.4, 160.6, 183.7, 205.4, 226.4, 245.3,
261.6, 275.2, 285.6, 292.4, 296.3. Determine the history
of heat flow into the outer surface by using only the given
inside temperatures.

Solution for example 6 (b).—Equations (43) may be used
to determine the outside-surface-temperature history from
the inside-temperature history. Then, the rate of heat
flow at any time is determined as in the solution for example
6 (). The factor 1/(1—6) in equations (43) may bo
thought of as a magnification factor. Large values of this
factor tend to cause an instability in the computed tempera-
tures. In thisexample, if §is taken as ¥ second or 1/7200 hour,
the value of k6/% is 0.3528, 6, is 0.80478, and the magnifica-
tion factor is 5.1. On substitution in equations (43), an
oscillation of period 25 builds up in the values of 7, very
slowly at first and to either side of the correct answer as a
mean value, but in a divergent manner so that by 4 seconds
the amplitude is 6°. For a value of & of 1 second, the value
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of k5[l is 0.7056, 6; is 0.58038, and the magnification factor
is 2.4, In this instance, an oscillation in 7" of period 28 and

maximum amplitude of 1.5° occurred. Substituting these
values of T, without fairing, into equation (42) gives the
results shown by the square symbols in figure 6. If a larger
value of § were used, the oscillation would be damped out
but the accuracy would suffer because of a lack of definition
of the rapidly varying heating rate. The particular case
demonstrated is therefore a marginal one for the determina-~
tion of heat flow from the temperatures of the inside surface.
The instability is found to disappear for thermally thinner
walls and conversely to increase rapidly for thicker walls.

CONCLUDING REMARKS

Formulas to facilitate the determination of the transient
surface temperatures of thick walls from an arbitrary
variation of adiabatic-wall temperature and heat-transfer

-coefficient have been developed. Formulas to facilitate the

determination of heat flow from an arbitrary variation of
wall surface temperature were also obtained. The numerical
applications given demonstrate a high degree of accuracy
for the present method. i

LANGLEY AERONAUTICAL LLABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
Laneuey Fiewp, Va., June 18, 1957.



APPENDIX A
REVIEW OF SUPERPOSITION AND TIME SERIES

TIME SERIES

A time series may be defined as a series of numbers or
quantities which represent. the values of a function of time
at successive equal intervals of time. According to the
notation of Tustin (ref. 3), each quantity is separated from
the others by a comma since the values corresponding to
different times are not added together. The quantity at
zero time is zero. The first quantity recorded represents
the value of the function at the end of the firgt time interval.
The time interval used is arbitrary and its size is selected
{o obtain the accuracy required in the solution of a specific
problem. The symbol for the time interval is 6. Thus, the
series ¥=9;, %2, ¥s, - - . Ym Tepresents the values of the
function y at the times §, 25, 35, . . . mé.

THE UNIT TRIANGLE

A unit triangle is an isosceles triangle which has an altitude
of unit magnitude and a base of 2§, or two time intervals.
Since & is an arbitrary time interval, the unit friangle is
accordingly arbitrary. A plot of a unit triangle centered
at =>4 is shown in sketch 1, where ¥ represents magnitude

Sketeh 1.

or altitude. The slopes of the sides of the triangle depend
on the value of § and are equal to £1/5. Three lines may be
superimposed to represent the unit triangle. The equations
of the three lines which may be added to represent the unit
triangle are y=(1/8)t, y=—(2/8)(t—35), and y=(1/8)(t—25).
Although the triangle terminates at =28, the values of ¢ in
the equations for ¢ can go on to infinity since the values of y
add to 0 beyond t==2s.
892

THE FUNCTION CORRESPONDING TO A REFERENCE LINE

Let F(z,t) be the solution to a boundary-value problem
specified by a linear partial differential equation and the
linear boundary condition y= (1/8)¢, where y is the value of
F or one of its derivatives or integrals at some fixed value of
z. Because of the linearity of the problem, the magnitude
of the solution is directly proportional to the magnitude of
the slope 1/6 of the boundary condition. For example, if
y=(2/8)t, the corresponding function representing the solu-
tion is 2F(z,t). Again, if y=—(2/6)t, the corresponding
function is —2F(z,t). The slope of the line y=(1/5)t can
thus be used as a reference magnitude. This slope is the
same as that of the left side of the unit triangle.

The value of ¢ in F(z,t) is always identical with the value
of ¢ in the boundary condition y=(1/8)t. Thus, if the origin
is shifted so that y=(1/5)(t—25), then the corresponding
function is F(x,t—26). Particular solutions of a linear
differential equation can always be added in linear combi-
nations to satisfy more general boundary conditions. If e
and b are constants, and aF(z,t) corresponds to the bound-
ary condition y;=(e/s)t, and bF(z,t—8) corresponds to
2= (b/8) (t—6), then the function corresponding to the sum of
the two lines y=y;+1; is F=aF(zx?)+bF(xt—35). Let an
additional property of F, as well as of y, be that it assumes

_ the value 0 for any time less than 0. The range of time of

interest is therefore from 0 to o.
THE FUNCTION CORRESPONDING TO A TRIANGLE

Now consider & function F,(¢t) dependent on the lines of
the unit triangle in sketch 1 for its value just as F(f) is
related to the line y=(1/6)t. In consideration of the three
lines by which the unit triangle may be replaced, y=(1/8)t,
y=—(2/8)(t—35), and y=(1/8)(t—28), the three correspond-
ing solutions or functions of time are I'(¢), —2F(t—é), and
F({—28). Because of the additive nature of solutions, the
solution corresponding to the complete triangle may be
defined as the sum of the solutions for the lines which com-
pose it:

Fa@)=F({t)—2F(1t—8)+F({t—26) (A1)

In equation (Al) each term has a value of zero for negative
values of its argument.
REPRESENTATION OF A GENERAL CURVE BY TRIANGLES

The curve A-B in sketch 2 (2) is any arbitrary continuous
function in the plane y,t which can be faired through its
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ordinate values 0, ¥, ¥;, and y;. The curve may be well
approximated by a series of chords such as a, b, and ¢ if a
suitable spacing § is used.

Y ()
3k /B/
[
ol b
r3
Y
1 A 2
Y
4 -
0 3 25 38 '
i
Y

{b)

)’2/\\ \

/
o n /
/ d
N
A

(o} ] 28 38 f
(a) Curve A-B.
(b) Bynthesis of curve A~B.
Sketch 2.

Draw the lines d, e, f, g, and h of sketch 2 (b) to form the
isosceles triangles with sides 8 and d, e and {, and g and h.
Since the sum of two straight lines is a straight line, it is
clear that, if the letters which designated the lines are now
used to designate the equation of the line, then d+e=Db and
f+g=c. Of course, the line a is the first half of the first
triangle as well as the first chord of the curve A-B. In
designating the ordinates ¥y, ¥2, %3, - - . ¥, the altitudes of
three triangles whose sides add up to the chords of the curve
A-B are simultaneously designated. The ordinate series
U1y Yas Y3y - - - Ym, With spacing §, is a time-series approxi-

mation of the curve A-B. In this case, as well as elsewhere .

in this report, each ordinate of a series is understood to
represent the altitude of an isosceles triangle with a base
width of 25.
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ARBITRARY CONTROL FUNCTIONS

Suppose that the curve A-B, or y(f), is to serve as an
arbitrary reference or control function for a corresponding
function F,(f). It is desired to determine F,(f) in terms of
functions corresponding to unit triangles, such as Fi(2),
given by equation (Al). The function Fa(f) is a function
corresponding to a unit triangle centered at i=45. If Fi(¢) is
multiplied by ¥y, there results the function corresponding to
the triangle with sides a and d of sketch 2 (b). By super-
position, the function corresponding to the three triangles
centered at §, 25, and 34 is

F,)=uFa@)+ 955t —0)+ysa(t—28)

Then, since the three triangles add up to the chords of the
curve A-B, this is the function, in ordinary algebraic form,
corresponding exactly to the chords of the general reference
curve Y=y, ¥z, ¥s, - - - Ym- 10 order to put equation (A2)
in time-series form, let Fa(t)=a,, @s, as, . . - @, With spacing
5. Substituting in (A2) and placing terms for the same time
in columns and adding yield

(A2)

Y Fat) =10y, 10z, has,
?le A (t'— 8) = 0) Yolln, Yala,
y3FA(t—26)= 0) 0) Ysy,
F,@) =y1a1, (N1aG+¥:01), (1% +1aty:a), - . . (A3)

The result shown by equation (A3) is obviously that which
is obtained by formal algebraic multiplication of a, as,as, . . .

by ¥1,%2,Ys, - - . as follows:
Fa)= a,, a, as,
y@ =y, Y2 Ys,
hN1ay, Y18a, 03,
Yz, Yalls,
Y5,
FyO)=ma;, 01a:+%:01), (1@a+1202+y501), - . . (A4)
Therefore,
F,@)e=[Fa@)dly @) (A5)

where the subscript 8 denotes time-series form.

Equation (A5) states a simple theorem which was first
given in reference 3. It was developed with y(f) having a
value of 0 at =0 and Fi(f) also having a value of 0 at t=0.
If either or both of the series had values other than 0 at
t=0, multiplication as in equation (A5) would not be suffi-
cient to obtain F.



APPENDIX B
SUMMARY OF ANALYTICAL TEMPERATURE FORMULAS FOR THICK WALLS

CONSTANT FLUID TEMPERATURES

Consider an infinite wall of thickness [ and an initial tem-
perature of zero. (See sketch 3.) Let the wall be suddenly

nh

T{x,1)

Inthal temperature = O

o
O\

Sketch 3.

contacted at the face x=I[ by & fluid of temperature 7., while
the face at =0 remains exposed to & fluid of zero tempera-
ture. Let the heat-transfer coefficient at the face 2=I[ have
the value h and the heat-transfer coefficient at the face x=0
have the value sh. Let the wall have uniform physical prop-
erties which are invariant with time.

 The flow of beat within the wall is governed by Fourier’s
equation for transient heat flow, which states that the rate
of increase of temperature is proportional to the rate of
change of temperature gradient:
\
oT , 0T
T B1)
The constant of proportionsality, called the diffusion coeffi-
cient, is equal to the ratio of the conductivity of the material
to the heat capacity as represented by the product of specific
heat and weight density as follows:

K

cp

The boundary equation for the wall at z=! is obtained by
equating the heat transfer between the fluid at temperature
T and the wall at temperature 7 to the rate of heat transfer
in the wall at z=lI:

ML) =K (& (B2)

0F Jzet
A similar boundary equation is written for z=0:
o}

ox )

!

The initial condition specifies that the initial temperature of
the wall is zero: ’

(T)t-o=0 (B4)

The simultaneous solution of partial differential equations (B1) to (B4) by operational methods yields the infinite scries:

149 %

T=Taw ——m'—2Taw 2 T

P
I D)

(B5)

The parameters «, are angles which are the positive roots of
the equation

a,(1+1)

wre="K H
“HT TR

(B52)

Two dimensionless numbers of physical significance are
present in equation (B5): the diffusion number k#/?, and the
conductance or Nusselt number %//K. The first term of
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14-9+9 z »=t [% an’—7 %—3(14-71)] cos %+[(%+1+ﬁ>a.—2 C—:’: %:I sin ay

" small as to be negligible is important.
- transfer coefficient at the unheated face equal to zero cor-

equation (B5) gives the steady-state solution or equilibrium

condition.
/ SPECIAL CASE =0

The special case of a plate that is heated by convection
on one face while the heat transfer on the other face is so
Setting the heat-

responds to making the assumption that the plate is por-
fectly insulated at that face. If the plate is perfectly in-
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sulated at the face z=0, substitule =0 in equations
(B56) and (B5a) and utilize the following relation to eliminate
8in a,

tan —@
(27 an'—K

(B6)

where a, represents the positive roots of the equation.

These substitutions yield the following expression for tem-

perature:
T . axl
cos (7 a,.> e ®
2Taw2

T— aw
n=t (1+%+—§ a,,’) cos ay,

B7)

Equations (B6) and (B7) may be found on page 100 of ref-
erence 1.
SPECIAL CASE y=0 AND h=o

The special case in which =0 and kA= corresponds
physically to perfect insulation on one face and a known
initial temperature on the other face. This case is developed
by setting = o in equations (B6) and (B7). Equation
(B6) becomes

a, tan a,=
tan q,= ®

5—2: and so forth,

. T 3r
or, since a, assumes the sequence Y5 5

2

’

ca=(2n—1) 3

Equation (B7) reduces to

— (20— 1):'_’2

(B8)

Equation (B8) may be found in standard references (ref. 5,
page 196, problem 6, for example). In this equation, Ts

T=T,—2 TSZ‘,( D™ cos [(271,—-1)

a=1 —1

is the step in wall-surface temperature used in place of |

Tow
VARIABLE FLUID TEMPERATURE

ARBITRARY VARIATION OF T, ,

Equation (B7) is an exact solution of a thick-wall bound-
ary-layer heating problem which is suitable for checking
the accuracy of the present method of computing wall
temperatures. Another method, which is more general,
can be obtained by letting the adiabatic-wall temperature
vary in a known manner, T,,=F(). Let V(z,) be the
variation of wall temperature due to a 1° step in adiabatic-
wall temperature. If the initial wall temperature is zero, the
wall temperature is given by Duhamel’s formula as

T(z, t)= fo BV, t—r)dr (B9)

where F'is the derivative of F' with respect to £ and risa
dummy time variable.

LINEAR VARIATION OF T,

In the linear variation of T, Taw=>bt, or, in the notation
of Duhamel’s formula, F=bt and F=b. Substituting 7T
from equation (B7), Wlth Tew=1, into equation (B9) and
performing the integmtion give

T, = bt—-2bl2 - COS (l a,,) (1 e t:a.=> B0
= <1+_+hl o ) coS e,

Equation (B6) is used to obtain a,.

LINEAR VARIATION OF WALL SURFACE TEMPERATURE

One of the fundamental equations on which is based the
time-series development of surface-temperature equations is
one expressing the transient wall temperature due to an in-
crease of 1° in temperature of one wall surface during each
interval of time 8. The assumptions are made that the
initial temperature is zero and that one wall is insulated.
From these considerations, F in Duhamel’s formula is
F=t/s and F=1/5. Substituting this derivative and T from
equation (B8), with Ts=1, into equation (B9) and perform-
ing the integration give the following equation for the tem-
perature at any plane due to a surface temperature rise of 1°

per unit of time §:
_m_l)’ﬁit
1—e

(B11)

The heat flow at any point within the wall due to 1° rise of
wall surface temperature in the time § is obtained by multi-
plying the conductivity by the temperature gradient. Dif-
ferentiating equation (B11) with respect to z and multiplying

2 o (—D*cos| @n—1)Z7
>
= @n—1)°

T~

_l
T B

s
gl

by K yield
gg e, D7 | en—1 32 Ny
=T @n—1)2 1—e

In order to eliminate % in the coefficient, substitute for k its
definition k=K/pc. Then IK[/ké=pcl/s. The product pcl
is the heat capacity of the wall per unit area per degree and
is represented by the symbol @. In order to obtain the heat
flow at the heated surface, where the heat balance is to be
made, let r=I. Hence, the instantaneous heat flow due to a
uniformly increasing surface temperature of 1° per unit of
time 4 is simplified to

i)
BlE

8¢ = 1—0
2 1—e¢
1= 2 @) (B12)
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In order to find the average fiow of heat over the interval
8, equation (B12) is integrated with respect to time between
the limits (t—&) and ¢. This integration gives the total heat
flow through the surface during the interval. On dividing by
8, the average rate of flow for the interval is obtained. The
result is

2 .
~(2a—1)2 14%: e i-k- 5

- 8@ 1 e
==+ 2, +
| B Bk
T 6@n—1) 4l,zs(zn, 1)4

(B13)

The summation Z} is & constant with the value #3/8.

1
a=1 (2n—1)*
In working with time series only integral increments of time
(5, 26,38,. . . md)areused. Inequation (B13), therefore,
t may have any value mé, where m is an integer. For con-
venience, and to systematize results, the following identities
are defined:

REPORT 1372—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

A 1 3
A= 2 Gn—1)*

—(m—1) (2n—1)2 .’ii ]

412 e ia r' (B14)

An1= S 2 o)

I —113(211""1)2 — -f—’- 8
4 @

A= Z’I 2n—1)* J

Equation (B13) then becomes

- _8G/x*

=37 +A — Ay

(B16)
for the time interval ending at {=mé. Equation (B15) is
used in forming the heat balance at the heated wall surface
in the derivation of wall temperature formulas.



APPENDIX C
ANALYTICAL TEMPERATURE DISTRIBUTION

Equations (40) are the formulas most convenient for
determining the temperature of the inside surface or of any
plane within the surface. For the determination of the
temperature of planes within the wall, equations (36a) are
ordinarily evaluated numerically to obtain 6 for a given kt/l?
and zfl. However, it may be necessary to obtain the tem-
perature distribution through the wall at some instant of

[Tz—T1+(2T1—Ta)

time due to an arbitrary surface-temperature history in a
form that is analytical with respect to =z and that can be
differentiated or integrated with respect to = (for example,
in the derivation of a general formula for the thermal stress
distribution or maximum stress). This temperature dis-
tribution is obtained by substituting equations (36a) into
equations (39), substituting equations (39) into equations
(40), and collecting terms. The results are

=1 k3 =2
—@-D'TH Tle_zcz”'l)"?%ﬂ]

x3 k5

1 o n—1 1T
To=Ti— 2 5 135 Gy cos | @n—1) G ][1— ey 55]
A— Tz
o 16 2 i (—1)** cos [(2n 1) 57
LTS ke (2n—1)*
161 (—1)""1 cos [(2n 1)
Tl G & @n—1)?

(T —Tye T Tle’m—n’?%]

(—1)""!cos I:(Zn 1)
2n—1)3

[2

Ton=To— 3 s 2

('—' Tm—l+2Tm—2_ Tm-—a)

Note that T',1, Ti2, Tis and Ty, can be computed inde-
pendently. The use of these equations involves considerable

ﬂf [Ts Tyt (—Tot2T—Tye > V' Eo 4

—2@2n—1)1—

[T T —l+( Tm+2Tm—1— m—Z) —on- l)’—"ﬁ-—l—

L]

Xk id )
TE L @B-Te T TR e 455]

labor, however, because all terms in the summation must be
summed in unison;
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